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Abstract. It is shown that the two components of the complex characteristic interaction
time ÿ (!) = ÿ1(!) ÿ iÿ2(!) for classical electromagnetic waves with an arbitrary shaped
barrier are not entirely independent quantities, but are connected by the Kramers-Kronig
relations. The corresponding macroscopic sum rule for the complex time is also derived. An
analogy between the interaction time problem and an electrical circuit with capacitive and
conducting components is established from which we propose that the eýective crossing time
should be the maximum of the two components.

1 Introduction

Although common sense dictates that the tunneling time must be a real quantity and
that there are no clocks that measure a complex time, nevertheless the concept of
complex time in the theory of the traversal time problem of electrons and electromag-
netic waves (EMW) has arisen in many approaches [1, 2, 3, 4]. Pollak and Miller [5],
while studying the average tunneling time in classical chemical systems, arrived at
the concept of an imaginary time through the ÿux-ÿux correlation function. A few
years later, the concept of a complex time arose more naturally in the Feynman path{
integral approach [6], when Sokolovski and Baskin [7] applied this kinematic approach
to quantum mechanics by a formal generalization of the classical time concept ÿ cl to
the traversal time in a þnite region. The oscillatory amplitude approach was pro-
posed by B�uttiker and Landauer [8, 9]. When applied without resorting to the WKB
approximation, it led Leavens and Aers [10] to complex times too. Jauho and Jonson
[11] showed that a general analysis of the time-modulated barrier approach, which was
proposed by Landauer and B�uttiker [12], leads again to a complex quantity. Fertig
[13] arrived at the same concept of complex time and derived the complex distribution
of traversal times for a particle tunneling through a rectangular barrier (see also Ref.
[14]). Recently Martin [4] provided a general framework for the formulation of the
traversal time by using the Feynman path integral approach. This formulation of the
problem leads to the same complex time as one would have expected. Gasparian et

al. [15, 16] have shown, with the help of the Green's function formalism, that the two
characteristic times appearing in the Larmor clock approach for electrons correspond
to the real and imaginary components of a single quantity deþned as an integral of
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the Green's function G(x; x;E) for an open and þnite system with length L

ÿ = ýh

Z L

0

G(x; x;E) dx = ÿiýh

ÿ
@ ln t

@E
ÿ

r + r0

4E

þ
; (1)

where t is the complex amplitude of transmission and r and r0 are the reÿection
amplitudes from the left and from the right, respectively. For a spatially symmetric
barrier V (x) = V (ÿx) one additionally has r = r0. In Ref. [3], with the Faraday
rotation scheme, a very similar result to Eq. (1) was obtained for the characteristic
interaction time ÿ of an EMW. In the þnite system, which represents our magnetic
clock, the Faraday rotation plays for light a similar role as the Larmor precession for
electrons [17, 18]. The emerging EMW is elliptically polarized and the major axis of
the ellipse is rotated with respect to the original direction of polarization. Both eüects
are quantiþed through the complex angle þ which depends on the time the EMW
spends in the slab. This motivated us to associate with this complex magnitude
a complex interaction time for the light in the region with magnetic þeld [3, 19].
Recently, Balcou and Dutriaux [20] experimentally investigated the tunneling times
associated with frustrated total internal reÿection of light. They have shown that the
real and imaginary parts of the complex tunneling time correspond, respectively, to
the spatial and angular shifts of the beam. Note that in most tunneling experiments,
instead of electrons, electromagnetic waves were used to exclude interaction eüects
(see, e.g. [21, 22, 23, 24]). The paper is organized as follows. In the next section we
obtain the general properties of the two components of the barrier interaction time
in a slab. In Sec. 3 we deduce the Kramers-Kronig relations for the time components
and establish an analogy with an electrical circuit. In Sec. 4 we study the relation
between the two time components for periodic systems.

2 Results for a slab

For the dielectric slab, Eq. (1) leads us to the following expressions for the two time
components [3]

ÿ sl1 (!) =
Tÿ sl

0

2A

ýü
1 +A2

û
+
ü
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ú
; (2)

and
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2
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where ÿ sl0 = L=v is the time that light with velocity v = c=n0 would take to cross
the slab when reÿection in the boundaries is not important. Moreover, û = !ÿ sl

0
and

A = n1=n0, where n0 is the refractive index of the slab and n1 the refractive index of
the two semi-inþnite media outside the slab. T is the transmission amplitude for the
slab in the absence of a magnetic þeld and is given by

T =

(
1 +

ù
1ÿA2

2A
sinû

ø2
)
ÿ1

: (4)
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Note that the þrst term on the r.h.s. of Eqs. (2) and (3), which is proportional to the
imaginary and real parts of @ ln t=@! respectively, mainly contains information about
the region of the slab. Most of the information about the boundary is provided by the
term proportional to the reÿection amplitude, r=!, which is of the order of the wave-
length ý over the length of the system L: Thus, it becomes important for low energies
and/or short systems. The time ÿ1(!) is proportional to the integrated density of
states (DOS) [15, 16]. It is always positive and reproduces the characteristic features
of the coeúcient of transmission T , i.e., it has a maximum at û0 = üm; where m is
an integer number. The sharpness and the breadth of the peaks depend on the ratio
A = n1=n0: At û1 þ ü=2 + üm, the DOS has a minimum in accordance with Eq.
(2). As it was pointed out in Ref. [25], a calculation of the DOS without taking into
account the second term in Eq. (1) yields a wrong result without oscillation terms.
Such oscillations in the DOS and the partial DOS should inÿuence the conduction
properties of suúciently small conductors [26] and, as was shown in Ref. [27], simi-
lar correction terms in two-dimensional mesoscopic conductors are needed to obtain
precise current conservation. Before closing this section, let us note that from the
discussions above it follows that the two components ÿ sl

1
(!) and ÿ sl

2
(!) of the com-

plex time are not independent quantities, but are connected through Kramers-Kronig
relations, as we shall now show.

3 Kramers-Kronig relations

The real and imaginary parts of certain complex physical quantities are interrelated
by Kramers{Kronig relations, e.g., the real (dispersive) part of the complex dielectric
function û(!) and its imaginary (dissipative) part or the frequency dependent real
and imaginary parts of an electrical impedance, etc. [28]. The derivation of these
relations is based on the fulþllment of four general conditions: causality, linearity,
stability and that the value of the physical quantity considered is assumed to be
þnite at all frequencies, including ! ! 0 and ! ! 1: If these four conditions are
satisþed, the derivation of Kramers{Kronig relations is a direct, purely mathematical
operation. These integral relations are very general and have been used in the theory
of classical electrodynamics, particle physics and solid state physics as well as in the
analysis of electrical circuits and electrochemical systems, see, e.g., [29]. A dispersion
relation between the localization length and the DOS was obtained by Thouless [30]
and rewritten in Ref. [31] in the form of a linear dispersion relation between the real
and imaginary parts of the logarithm of the complex transmission amplitude. From
this dispersion relation it is straightforward to show that the complex interaction time
is an analytical function of frequency in the upper half of the complex !-plane, see,
e.g., [28]. The four conditions mentioned above are fulþlled for the complex time
(1) and the following relationship between the ÿ(!) and its complex conjugate ÿþ(!)
holds on the real axis (see Eq. (1)):

ÿ(!) = ÿþ(ÿ!): (5)

Therefore, the real part ÿ1(!) is an even function of frequency and can have a þnite
value at zero frequency (for the slab we have ÿ sl

1
(0) = L=vA). On the contrary, the

imaginary part ÿ2(!) is an odd function of frequency and must vanish in the limit of
zero frequency. These conditions imply that the real and imaginary components of
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the time obey Kramers-Kronig integral relations. Hence the real component can be
writen as

ÿ1(!) = ÿ0 +
2

ü
P

Z
1

0

yÿ2(y)

y2 ÿ !2
dy; (6)

while the imaginary component can be expressed as

ÿ2(!) = ÿ
2!

ü
P

Z
1

0

ÿ1(y)ÿ ÿ0
y2 ÿ !2

dy; (7)

where P means principal part and ÿ0 is the crossing time in the dielectric system,
assuming no boundaries. From Eq. (6) we deduce, provided the imaginary time
component ÿ2(!) is zero at all frequencies, that ÿ1 = ÿ0 always holds. For the dielectric
slab, the integral relations (6) and (7), which are the central result of our work, can
be explicitly veriþed by using the expressions (2) and (3) (see, e.g., [32]). The validity
of the Kramers{Kronig relations for the complex interaction time has a rather deep
signiþcance because they are a direct result of the causal nature of physical systems by
which the response to a stimulus never precedes the stimulus. They can also serve as
a starting point for the understanding of the origin of the complex time and state that
the interaction time for any classical or quantum-mechanical wave will always have
two components. At this point it is worth mentioning that the experiments with, e.g.,
undersized waveguides [21, 22] or periodic dielectric heterostrucures [23, 24], where
the so called \superluminal velocities" have been observed for the barrier tunneling
time, need to be interpreted carefully. The analogy between the complex time and
the complex dielectric function can serve to map the interaction time problem to
a two channel electrical circuit. For the purpose of illustration, let us expand the
expressions (2) and (3) for ÿ sl1 (!) and ÿ sl2 (!) near ! þ 0,

ÿ sl1 (!) =
ÿ0
A

(
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ù
1ÿA2

2A
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; (8)

and
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The dependences of ÿ sl1 and ÿ sl2 on frequency, apart from some irrelevant factors, are
similar to the Debye expressions for the real and imaginary parts of the complex
dielectric function ûþ(!)ÿ û1 (see, e.g., [29]),

û1 ÿ û1 =
ûs ÿ û1

1 + (!ÿ)
2
; (10)

and

û2 =
(ûs ÿ û1)!ÿ

1 + (!ÿ)
2

; (11)

where ûs and û1 are the static and the high{frequency dielectric constants, respec-
tively. This analogy, apart from its direct relevance to a class of linear response
phenomena, makes it possible to replace the dielectric slab in a magnetic þeld, i.e.
our magnetic clock for the EMW traversal time, by a circuit analog which consists of
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a parallel combination of a frequency dependent capacitance C(!) and a frequency
dependent conductance G(!). Thus the natural way of describing the barrier interac-
tion time problem is via two parallel channels which correspond to two mechanisms
of similar physical phenomena. In other words, ÿ1(!) and ÿ2(!) are the times spent
by the EMW in the capacitive and conducting channels, respectively.

Fig. 1 Interaction time diagram for a dielectric slab in the complex plane: ÿÿ sl
2 (!) is plotted

vs ÿ
sl

1 (!) for each frequency. With increasing frequencies the curve tends towards a perfect
circle.

In Fig. 1 we plotted the complex time components ÿÿ sl
2
(!), Eq. (2), versus ÿ sl

1
(!),

Eq. (3), in units of ÿ0. Each point corresponds to a frequency, and with increasing
frequencies the curve tends towards a perfect circle. We see that for small frequencies
we have a skewed arc. With increasing frequency, the inÿuence of the second term in
Eqs. (2) and (3), due to boundary eüects, becomes less important and the curve, in
the limit ! !1, approaches an ideal circle of radius

r =
ÿ sl0
4A

ü
1ÿA2

û2
1 +A2

: (12)
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4 Results for a periodic system

We now consider a periodic arrangement of layers. Layers with refractive index n1

and thickness d1 alternate with layers of refractive index n2 and thickness d2. The
wavenumbers in the layers of the þrst and second type are k1 = !n1=c and k2 =
!n2=c, respectivley, and a = d1 + d2 is the spatial period. The periodicity of the

Fig. 2 The time ÿÿ2(!) as a function of ÿ1(!) for a double barrier system.

system enables us to obtain analytically the transmission amplitude by using the
characteristic determinant method [19]:

tN =
eÿik1d1

cos Nÿa

2
ÿ i

sin
Nÿa

2

sinÿa

r
sin2(úa) +

h
k2
1
ÿk2

2

2k1k2
sin(k2d2)

i2 ; (13)

where ú plays the role of quasimomentum of the system and is deþned by

cos(úa) = cos(k1d1) cos(k2d2)ÿ
k2
1
+ k2

2

2k1k2
sin(k1d1) sinh(k2d2) : (14)

When the modulus of the r.h.s. of Eq. (14) is greater than 1, ú has to be taken as
imaginary. This situation corresponds to a forbidden frequency window. The two
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components of the interaction time are obtained by substituting the previous value
of the transmission amplitude, Eq. (13), in the expression for the complex time Eq.
(1). We concentrate on the simplest periodic case with the choice n1d1 = n2d2,
which is used in most experimental setups [23]. We consider systems with alternating
refractive indices of 2 and 1 and widths of 0.6 and 1.2, respectively. The simplest
of these systems is the double barrier (two dielectric slabs) whose interaction time
diagram is shown in Fig. 2. The times ÿ2(!) and ÿ1(!) are measured in units of the ÿ0
of the corresponding system. At high frequencies, the curve tends to an asymptotic
þgure presenting a double periodicity.

5 Conclusion

We have shown that the two components of the complex barrier interaction time for
EMW are not independent quantities, but are connected by Kramers{Kronig rela-
tions. Thus the response to a stimulus never precedes the stimulus. In this paper, the
validity of the Kramers{Kronig relations was only checked analytically for EMW, but
we believe that they are also valid for any wave governed by a diüerential equation
of second order, as indicated by the numerical calculations for the complex tunneling
time for electrons.

G.S. and V.G. would like to acknowledge ünancial support by the Bundesminister f�ur Bil-
dung, Wissenschaft und Forschung (BMBF) of Germany, contract number 03N1012A7, and
to thank M. B�uttiker, C.R. Leavens, J.G. Muga, U. Simon and H. Wiggers for helpful and
stimulating discussions. J.R. and M.O. would like to acknowledge the Spanish DGES for
ünancial support: project number PB96/1118.

References

[1] E.H. Hauge, J.A. Stûvneng, Rev. Mod. Phys. 61 (1989) 917
[2] R. Landauer, Th. Martin., Rev. Mod. Phys. 66 (1994) 217
[3] V. Gasparian, M. Ortu~no, J. Ruiz, E. Cuevas, Phys. Rev. Lett. 75 (1995) 2312
[4] Th. Martin, Int. J. Mod. Phys. B 10 (1996) 3747
[5] E. Pollak, W. H. Miller, Phys. Rev. Lett. 53 (1984) 115
[6] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New

York (1965)
[7] D. Sokolovski, L.M. Baskin, Phys. Rev. A 36 (1987) 4604
[8] M. B�uttiker, R. Landauer, Phys. Scripta 32 (1985) 429
[9] M. B�uttiker, R. Landauer, IBM J. Res. Develop. 30 (1986) 451
[10] C.R. Leavens, G.C. Aers, Solid St. Commun. 63 (1987) 1101
[11] A.P. Jauho, M. Jonson, J. Phys.: Condens. Matter 1 (1989) 9027
[12] M. B�uttiker, R. Landauer, Phys. Rev. Lett. 49 (1982) 1739
[13] H.A. Fertig, Phys. Rev. Lett. 65 (1990) 2321
[14] D. Sokolovski, J.N.L. Connor, Phys. Rev. A 44 (1991) 1500;

D. Sokolovski, J.N.L. Connor, Phys. Rev. A 47 (1993) 4677;
G. Iannaccone, B. Pellegrini, Phys. Rev. B 49 (1994) 16548;
A.Steinberg, Phys. Rev. Lett. 44 (1995) 2405

[15] V. Gasparian, M. Pollak, Phys. Rev. B 47 (1993) 2038
[16] V. Gasparian, M. Ortu~no, J. Ruiz, E. Cuevas, M. Pollak, Phys. Rev. B 51 (1995) 6473
[17] I.A. Baz', Sov. J. Nucl. Phys. 4 (1967) 182
[18] M. B�uttiker, Phys. Rev. B 27 (1983) 6178
[19] J. Ruiz, M. Ortu~no, E. Cuevas, V. Gasparian, J. Phys. I (France) 7 (1997) 653

762 Ann. Phys. (Leipzig) 7 (1998) 7Ð8



[20] Ph. Balcou, L. Dutriaiux, Phys. Rev. Lett. 78 (1997) 851
[21] A. Enders, G. Nimtz, J. Phys. I (France) 2 (1992) 1693
[22] A. Enders, G. Nimtz, Phys. Rev. E 48 (1993) 632
[23] A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71 (1993) 708
[24] Ch. Spielman, R. Szip�ocs, A. Stingl, F. Krausz, Phys. Rev. Lett. 73 (1994) 708
[25] V. Gasparian, T. Christen, M. B�uttiker, Phys. Rev. A 54 (1996) 4022
[26] M. B�uttiker, Phys. Rev. B 40 (1989) 3405
[27] J. Wang, Q. Zeng, H. Gou, Phys. Rev. B 55 (1989) 9770
[28] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press,

New York (1982)
[29] J. Ross Macdonald, Impedance Spectroscopy, Wiley, New York (1987)
[30] D.J. Thouless, Phys. Rep. 136 (1974) 94
[31] V.M. Gasparian, B.L. Altshuler, A.G. Aronov, Z.H. Kasamanian, Phys. Lett. A 132

(1988) 201
[32] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,

New York (1965)

V. Gasparian et al., The Kramers-Kronig relations and the interaction time problem 763


